Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20681, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001120

RESUMO

Shock Ignition is a two-step scheme to reach Inertial Confinement Fusion, where the precompressed fuel capsule is ignited by a strong shock driven by a laser pulse at an intensity in the order of [Formula: see text] W/cm[Formula: see text]. In this report we describe the results of an experiment carried out at PALS laser facility designed to investigate the origin of hot electrons in laser-plasma interaction at intensities and plasma temperatures expected for Shock Ignition. A detailed time- and spectrally-resolved characterization of Stimulated Raman Scattering and Two Plasmon Decay instabilities, as well as of the generated hot electrons, suggest that Stimulated Raman Scattering is the dominant source of hot electrons via the damping of daughter plasma waves. The temperature dependence of laser plasma instabilities was also investigated, enabled by the use of different ablator materials, suggesting that Two Plasmon Decay is damped at earlier times for higher plasma temperatures, accompanied by an earlier ignition of SRS. The identification of the predominant hot electron source and the effect of plasma temperature on laser plasma interaction, here investigated, are extremely useful for developing the mitigation strategies for reducing the impact of hot electrons on the fuel ignition.

2.
Rev Sci Instrum ; 92(2): 023514, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648071

RESUMO

This paper describes design, development, and implementation of a multi-channel magnetic electron spectrometer for the application in laser-plasma interaction experiments carried out at the Prague Asterix Laser System. Modular design of the spectrometer allows the setup in variable configurations to evaluate the angular distribution of hot electron emission. The angular array configuration of the electron spectrometers consists of 16 channels mounted around the target. The modules incorporate a plastic electron collimator designed to suppress the secondary radiation by absorbing the wide angle scattered electrons and photons inside the collimator. The compact model of the spectrometer measures electron energies in the range from 50 keV to 1.5MeV using ferrite magnets and from 250 keV to 5MeV using stronger neodymium magnets. An extended model of the spectrometer increases the measured energy range up to 21MeV or 35MeV using ferrite or neodymium magnets, respectively. Position to energy calibration was obtained using the particle tracking simulations. The experimental results show the measured angularly resolved electron energy distribution functions from interaction with solid targets. The angular distribution of hot electron temperature, the total flux, and the maximum electron energy show a directional dependence. The measured values of these quantities increase toward the target normal. For a copper target, the average amount of measured electron flux is 1.36 × 1011, which corresponds to the total charge of about 21 nC.

3.
Sci Rep ; 8(1): 17895, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559388

RESUMO

Optical generation of compact magnetized plasma structures is studied in the moderate intensity domain. A sub-ns laser beam irradiated snail-shaped targets with the intensity of about 1016 W/cm2. With a neat optical diagnostics, a sub-megagauss magnetized plasmoid is traced inside the target. On the observed hydrodynamic time scale, the hot plasma formation achieves a theta-pinch-like density and magnetic field distribution, which implodes into the target interior. This simple and elegant plasma magnetization scheme in the moderate-intensity domain is of particular interest for fundamental astrophysical-related studies and for development of future technologies.

4.
Radiat Prot Dosimetry ; 161(1-4): 343-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24563524

RESUMO

State-of-the-art laser systems are able to generate ionising radiation of significantly high energies by focusing ultra-short and intense pulses onto targets. Thus, measures ensuring the radiation protection of both working personnel and the general public are required. However, commercially available dosemeters are primarily designed for measurement in continuous fields. Therefore, it is important to explore their response to very short pulses. In this study, the responses of dosemeters in a radiation field generated by iodine high-power and Ti:Sapphire laser systems are examined in proton and electron acceleration experiments. Within these experiments, electron bunches of femtosecond pulse duration and 100-MeV energy and proton bunches with sub-nanosecond pulse duration and energy of several megaelectronvolts were generated in single-shot regimes. Responses of typical detectors (TLD, films and electronic personal dosemeter) were analysed and compared. Further, a first attempt was carried out to characterise the radiation field generated by TW-class laser systems.


Assuntos
Lasers , Exposição Ocupacional/prevenção & controle , Radiometria/instrumentação , Radiometria/métodos , Óxido de Alumínio/química , Anisotropia , Eletrônica , Elétrons , Desenho de Equipamento , Humanos , Iodo , Exposição Ocupacional/análise , Prótons , Doses de Radiação , Proteção Radiológica/instrumentação , Radiação Ionizante , Silício , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos , Titânio/química
5.
Rev Sci Instrum ; 85(1): 013302, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517754

RESUMO

A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser for Heavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...